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Abstract

Vehicle fires are a common occurrence, yet few studies have reported exposures associated with 

burning vehicles. This article presents an assessment of firefighters’ potential for ultrafine and 

respirable particle exposure during vehicle fire suppression training. Fires were initiated within the 

engine compartment and passenger cabins of three salvaged vehicles, with subsequent water 

suppression by fire crews. Firefighter exposures were monitored with an array of direct reading 

particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the 

instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet 

positioned at the nozzle operator’s shoulder. The instruments measured the particle number, active 

surface area, respirable particle mass, photoelectric response, aerodynamic particle size 

distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 

minutes), firefighters may be exposed to short duration, high particle concentration episodes 

during fire suppression, which are orders of magnitude greater than the ambient background 

concentration. A maximum transient particle concentration of 1.21 × 107 particles per cm3, 170 

mg m−3 respirable particle mass, 4700 μm2 cm−3 active surface area and 1400 (arbitrary units) in 

photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute 

time-weighted averages, engine compartment fires averaged 5.4 × 104 particles per cm3, 0.36 mg 

m−3 respirable particle mass, 92 μm2 cm−3 active particle surface area and 29 (arbitrary units) in 

photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 105 particles per cm3, 2.7 

mg m−3 respirable particle mass, 320 μm2 cm−3 active particle surface area, and 34 (arbitrary 
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units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure 

than engine compartment fires. The wind direction and the relative position of the fire crew to the 

stationary burning vehicle played a primary role in fire crews’ potential for exposure. We 

recommend that firefighters wear self-contained breathing apparatus during all phases of the 

vehicle fire response to significantly reduce their potential for particulate, vapor, and gaseous 

exposures.

Introduction

From 2003 to 2007, an average of 300 000 highway vehicle fires occurred annually in the 

United States, representing 17% of all fire department responses.1 Of 300 000 highway 

vehicle fires, 86% involved passenger vehicles.2 Despite their regular frequency, relatively 

few studies have been conducted for vehicle fires, and those reported, have focused on 

emissions and combustion processes rather than potential hazardous exposures to 

firefighters.3–6

Exposure to particulate matter as a component of ambient air pollution is widely recognized 

as a cause for adverse cardiovascular and respiratory health effects in the general 

population.7 Firefighters are frequently exposed to particulate matter within smoke as a 

consequence of their fire suppression duties. Particulate matter exposure may play a crucial 

role in firefighters acquiring two diseases: cancer and heart disease. Two recent studies have 

strengthened the association between firefighting, as an occupation, and an increase in the 

incidence of certain cancers found in the respiratory, digestive, and urinary systems when 

compared to the general population.8,9 The inhaled particulate matter during firefighting 

could be a causative factor for some of these cancers.

A second health outcome potentially related to particulate exposure is cardiac events. Each 

year in the United States, approximately 35 to 40 firefighters succumb to sudden cardiac 

death on duty, while more than 600 suffer non-fatal cardiac events.10,11 Of the 

approximately 1.15 million firefighters (350 000 career and 800 000 volunteer) in the United 

States, there are approximately 100 firefighter fatalities in any given year and between one 

third10 to one half12 are due to a sudden cardiac event. Particulate exposure in combination 

with other cardiovascular stressors is believed to play a crucial role in some of these sudden 

cardiac events.13

The study described here was conducted as a NIOSH health hazard evaluation14 concerning 

firefighters’ potential exposures during vehicle fire suppression training. Training exercises 

provide a realistic and unique opportunity to observe and monitor firefighters during 

multiple live fires. Although self-contained breathing apparatus (SCBA) can significantly or 

completely mitigate inhalation exposure when fitted and functioning, they are not always 

worn or may be doffed prematurely. Dermal absorption may also contribute to the systemic 

dose of some toxicants.15 This paper is the second of a two part series. This paper estimates 

a firefighters’ potential exposure to ultra-fine and respirable particles during vehicle fire 

suppression using direct reading instruments. The first paper reported potential chemical 

vapor and gas exposures for the same series of vehicle fires.16
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Particle monitoring described here focused on the application of direct reading instruments, 

primarily because fire responses were anticipated to be of short duration and sequential 

monitoring of each suppression phase was of particular interest. Multiple particle metrics 

were desired in parallel because various characteristics may contribute to particle toxicity. 

For example, the particle mass alone may not fully account for adverse health effects from 

fine particle exposure.17

Methods

Population, site, vehicles and fires

Nineteen firefighters (mostly volunteer), including fire chief and assistant fire chief from a 

small municipal fire department in Southwest Ohio, participated in the evaluation.14 

Salvaged vehicles were used in the training exercises, which took place on a former 

industrial parking lot, surfaced with concrete. Training consisted of three phases: (1) startup 

or ignition—when the fire was ignited, allowed to build in intensity, and fire fighters 

approached the burning vehicle, (2) knockdown—when the fire (flames) was suppressed 

with a single water jet, and (3) overhaul—when the firefighters searched for and suppressed 

flare-ups and remaining hot-spots. Engines and cabins of the vehicles were separately and 

sequentially ignited with signal flares and a small volume of gasoline (petroleum) as the 

accelerant. A single fire apparatus was present at the fire scene. The firefighters observed 

the fire from a safe distance for two to five minutes to let the fires build in intensity before 

suppression commenced. The duration for each suppression phase averaged thirty seconds 

for approach, as the firefighters positioned themselves at the burning vehicle, two minutes 

for knockdown, and two to three minutes for overhaul.

Three firefighters were involved in the active suppression of the vehicle fires: a nozzle 

operator, a backup, and an officer. The nozzle operator directed a single water jet, the 

backup assisted with handling the hose and the officer directed and assisted where needed. 

In addition, a fourth firefighter assisted with the particle sampling described here, by holding 

the sampling duct inlet close to the shoulder of the nozzle operator to estimate particle 

concentrations in the firefighters’ breathing zone. All firefighters wore full turnout gear and 

SCBA throughout all three phases. Engine compartments and passenger cabins were 

sequentially ignited for: a 1994 Ford Aerostar® minivan, a 1986 Toyota Corolla® sedan, 

and a 1986 Toyota Celica® coupe, totaling six fires. The belts, fluids, batteries, cushions, 

and upholstery were present in each vehicle, but fuel tanks had been previously drained.

Particle sampling

Particles were sampled in close proximity to the firefighters suppressing fires with the use of 

a 7.6 meter length of 15 cm diameter flexible aluminum ducting attached to a mobile 

particle sampling platform previously described in detail.18 The platform, custom configured 

for this application (Fig. 1), allowed simultaneous and continuous measurement of particles 

generated from fires in real time by multiple instruments and metrics. A downstream blower 

(Ramfan UB20, Euramco Safety, Spring Valley, California) drew combustion contaminants 

through the ducting to the instruments. A mean velocity of 6.0 m s−1 was attained within the 

flexible duct, resulting in a contaminant residence time of 1.3 s from the duct inlet to 
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instrument sampling probes. The flow within the duct was turbulent (Reynolds number, Re 

~60 000). Stainless steel sampling probes with sharp beveled inlets and gentle radii were 

sized and oriented toward the duct inlet to minimize particle sampling artifacts. Short 

lengths of conductive silicone tubing were used to connect sampling probes to instruments. 

The flexible sampling duct can be seen in Fig. 2, being held by one of the fire crew during 

knockdown for the first vehicle engine fire.

Particle concentration metrics included the number, active surface area, respirable mass, 

photoelectric response, and size distribution from 7 nm to 10 μm. The particle number was 

provided by using a condensation particle counter (CPC, TSI 3007, Shoreview, Minnesota) 

with an inline HEPA filter capsule based dilution device.18,19 Anticipated high particle 

number concentrations during fires, required CPC dilution. The endcap of the filter capsule 

was predrilled, such that the major flow through the capsule passed through the filtration 

media, and a minor flow bypassed the filtration media through the drilled endcap. This 

resulted in a dilution ratio of 118 to one, determined, by switching between diluted and 

undiluted background aerosol. Particle number concentration data were subsequently 

corrected by this ratio, for the duration the inline diluter was fitted. The active particle 

surface area, respirable particle mass, photoelectric response and particle size distributions 

were provided by using a diffusion charger (DC 2000CE, EcoChem Analytics, Murrieta, 

California), a photometer (TSI DustTrak 8520) with Dorr-Oliver cyclone inlet positioned 

within the duct, a photoelectric aerosol sensor (PAS 2000CE, EcoChem Analytics), and an 

Electrical Low Pressure Impactor (ELPI, Dekati, Tampere, Finland), respectively. Air 

quality metrics (temperature, relative humidity, CO, and CO2 concentrations) were also 

monitored from within the duct (TSI Q-Trak Plus 8554). A one second data logging interval 

was selected for the condensation particle counter, photometer, ELPI and Q-Trak. The 

diffusion charger and photoelectric aerosol sensor required a minimum ten second logging 

interval. Environmental variables (temperature, relative humidity, wind speed and direction) 

were obtained with an onsite mobile weather station previously described.14

Results

A light wind (4.2 km h−1) was present from a predominately southerly direction. 

Consequently, the firefighters approached the fires from either southeasterly (engine fires) 

or southerly (cabin fires) directions, which tended to take smoke away from the firefighters 

(some swirling or veering of the wind was also observed on occasions, as later discussed). In 

full sun, ambient air temperatures ranged from 24 to 26 °C, while the relative humidity 

remained relatively steady (mean average of 33%). A maximum relative humidity of ~70% 

was measured within the duct following knockdown of the vehicle 3 passenger cabin fire. 

Using IR thermometry, passenger cabin fires were hotter than engine compartment fires, and 

some metallic vehicle parts remained at elevated temperatures (>93 °C) after knockdown. 

All but one fire exceeded 540 °C. However, no significant temperature elevations were 

observed within the particle sampling duct.

Fig. 3a–c represent simultaneous time series for the various particle metrics (on logarithmic 

scales) throughout the six vehicle fires. Intense, but short duration smoke episodes can be 

observed, elevating particle concentrations orders of magnitude above those of background 
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and smoke episodes not associated with a particular phase of fire response. Fifteen-minute 

time weighted average (TWA) concentrations from each of the vehicle fires are presented in 

Table 1. A maximum transient particle concentration of 1.21 × 107 cm−3 for particle 

number, 170 mg m−3 for respirable mass, 4700 μm2 cm−3 for active surface area and 1400 

(arbitrary units) for photoelectric response were obtained throughout the series of six fires. 

Fig. 4 presents particle number concentrations (on a logarithmic scale) measured by the 

ELPI and segregated into stages within the ultrafine (<100 nm), fine (100 nm > 1 μm) and 

coarse (1 μm > 10 μm) particle size ranges. Although particle number concentrations are 

dominated by the ultrafine particle size fraction, coarse and fine particles also contribute 

during intense smoke episodes. Fig. 5 presents four particle size distributions obtained with 

the ELPI, averaged over at least 30 seconds duration. An ambient background particle size 

distribution was obtained before all car fires took place (approx. 12 : 10 to 12 : 20). Diesel 

exhaust plumes from the upwind fire apparatus influenced measurements on an intermittent 

basis and were particularly evident between vehicle 1 and 2 fires (Fig. 4) due to the proximal 

position of the apparatus. One such transient concentration increase (approx. 15 : 35) is 

further characterized in Fig. 5 and suggests a primary mode at approximately 40 nm. An 

engine fire plume distribution was obtained during the 2nd vehicle engine fire (approx. 15 : 

00), and a cabin fire plume distribution was obtained during the 3rd passenger cabin fire 

(approx. 16 : 32). The vehicle fire plume distributions exhibit a somewhat similar size 

profile, but also some significant differences. The engine compartment fire plume manifests 

a primary mode in the ultrafine size range (approx. 30 nm), whereas the passenger cabin fire 

plume exhibits a primary mode in the fine size range (approx. 250 nm), suggesting a 

dominant accumulation mode. The passenger cabin fire plume is close to one order of 

magnitude greater in the ultrafine and two orders of magnitude greater in the fine and coarse 

particle size ranges in number concentration than the engine compartment fire plume.

Discussion

Vehicle fires are common for the fire service. On average, one in seven fire department 

responses are to the 300 000 annual vehicle fires.2 For those fire departments with major 

highways or road networks within their jurisdiction, the number of vehicle fire responses 

may be higher. Almost two thirds of all highway vehicle fires commence within the engine 

compartment, the running gear, or the wheel area. Furthermore, mechanical or electrical 

failures account for roughly three quarters of all fire causes.20

Although some fire departments routinely employ SCBA during vehicle fire responses 

(similar to the fire crew in this study), this is not standard policy across all fire departments. 

When worn, fitted and functioning correctly, SCBA has an assigned protection factor of 1 × 

104 and provides substantial protection, if not complete attenuation of toxicant inhalation 

exposures.21 Due to the anticipated short duration of the fire response, however, SCBA may 

not be donned by some crews and in volunteer fire departments, not all firefighters may 

possess SCBA. In a study of firefighters in Montreal QC, SCBA was used in only 6% of the 

time at all fires (including vehicle fires).22 More recently, and from a smaller study cohort, 

only approximately one third of firefighters from Chicago, IL reported SCBA use during 

vehicle fire knockdown.15 Restricted peripheral vision, fogging of the mask, hampered 

physical movement, weight of the SCBA ensemble, potential for heat stress and saving the 
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compressed air tanks for longer duration structure fires are all factors that may influence the 

decision not to wear or earlier than optimal doffing of SCBA. Oftentimes, even if SCBA is 

initially donned for approach and knockdown, it may then be doffed for overhaul, leaving 

firefighters unprotected. It should also be noted that the SCBA can protect more than just the 

respiratory system. The face piece (mask) can also protect the eyes and face from radiant 

heat and airborne debris. During cabin fires in this study, windows shattered and tires 

exploded. Furthermore, if present within vehicles, air bags and other safety-related devices 

can deploy with the potential of flinging hot, sharp and/or toxic airborne debris out of the 

vehicle, potentially injuring unprotected fire crew members.

In this study, it was observed that the potential for particle exposure was primarily 

influenced by the position of the fire fighters relative to the burning vehicle and the light, 

southerly wind. Firefighters generally attacked the fire from an upwind or smoke clear 

position, as per standard fire department policies. However, this may not always be practical 

when access is restricted. During this study, the visible smoke plume would occasionally 

veer and engulf the fire crew. These veering plumes contributed to the highest concentration 

exposure events observed during the ignition/approach and knockdown phases, (Fig. 3a 

through c). The peak particle concentrations observed during the passenger cabin fire for 

vehicle 3 (Fig. 3c and Table 1) illustrate that exposures could persist into the overhaul phase, 

when a firefighter might remove SCBA. This particular plume event, which commenced 

during knockdown, lingered as the crew transitioned into overhaul. This plume was also 

largely responsible for driving the highest mean 15 minute TWA concentrations observed 

for the particle number, respirable particle mass and active surface area in this study (Table 

1).

In addition, the fire crew would occasionally position themselves downwind of the water 

dowsed vehicle to enable better access to residual burning and smoldering components 

during overhaul. This was particularly evident following the knockdown of the passenger 

cabin fires, at which point the fire crew would be in the direct path of particulate 

concentrations that were falling but nevertheless elevated above those of the background 

(see Fig. 3a through c). The potential for elevated particle exposure was therefore observed 

during all phases of fire suppression, as evidenced by the increased particle number, 

respirable mass, and other metrics.

Although this article focuses on the particle exposure component, other exposures are likely, 

including exposures to volatile compounds. Fent and Evans,16 from the same series of 

vehicle fires as reported here, measured air concentrations of formaldehyde, acrolein, total 

reactive isocyanate groups, and CO near or above applicable ceiling limits or short-term 

exposure limits. According to exposure modelling for the most exposed firefighters, 

personal exposures to these volatile compounds were estimated to be nearly 10 times the 

acceptable levels on an additive effects basis.16 Bolstad-Johnson et al.23 examined 

firefighter exposures during overhaul activities in a series of residential structure fires in 

Phoenix, AZ. Several chemical exposure limits were exceeded, including ceiling limits for 

acrolein, CO, formaldehyde, and glutaraldehyde, and short term exposure limits for benzene, 

NO2, and SO2. In addition, PAH concentrations also exceeded exposure limits on an 
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additive effects basis. Adverse respiratory effects have also been reported following 

structure fire overhaul.24

Respirable particles potentially serve as a vehicle to deposit adsorbed toxicants into the 

unciliated, gas exchange regions of the lung, where a large lung surface exists and clearance 

mechanisms are least effective. Respirable mass estimates from our study (Table 1), derived 

from direct-reading photometer measurements, averaged 0.36 mg m−3 for three engine fires 

and 2.7 mg m−3 for three cabin fires over 15 minute intervals. The background respirable 

mass concentration averaged 0.007 mg m−3. Higher particle mass concentrations obtained 

for passenger cabin fires can be explained by greater fuel loads, more extensive fires, and a 

longer suppression when compared to engine compartment fires. In comparison, Bolstad-

Johnson et al.23 reported a mean average respirable dust concentration of 8.01 mg m−3 

during the overhaul phase of residential structure fires. Fent et al.14 reported estimated PM10 

(particulate with an aerodynamic diameter of less than 10 μm) mass concentration 

measurements averaging 340, 626, and 9.0 mg m−3 during active fires, knockdown, and 

overhaul, respectively, within burning structures. Our mean average results for the entire 

vehicle fire response are at significantly lower concentrations than those reported by either 

Bolstad-Johnson et al.23 during structural overhaul or those reported by Fent et al.15 during 

the sequential phases of the structural fire response. Combustion products confined within 

structures will generally enhance the magnitude of firefighters’ exposure to toxicants. 

Particulate, gas, and vapor concentrations during fires have an inverse relationship with 

ventilation.25 In the open atmosphere, as is typical for the majority of vehicle fires, 

contaminants may be more quickly diluted, dispersed and/or moved away from the fire 

crew.

On a particle number concentration basis (Table 1), engine fires averaged 5.4 × 104 particles 

per cm3 and cabin fires averaged 2.04 × 105 particles per cm3. Background concentrations 

averaged 1.1 × 104 particles per cm3. Expressed as TWAs, passenger cabin fire particle 

number concentrations were always greater than engine compartment fire concentrations in 

our study. A greater fuel load consequently leads to a more extensive fire and a longer 

suppression, resulting in enhanced potential for particle number concentration exposure. Our 

15 minute TWA results reported here are greater than the 1.96 × 104 particles per cm3 

average reported by Baxter et al.6 during overhaul for a single vehicle cabin fire.

On a particle active surface area concentration basis, our results averaged 92 μm2 cm−3 

overall for the engine fires and 320 μm2 cm−3 overall for the cabin fires. Similar to 

respirable particle mass and particle number, cabin fires were greater in the active particle 

surface area than engine fires. The active particle surface area generally follows the particle 

number more closely than the respirable particle mass18,26 and our results appear to be in 

keeping with these earlier observations. When displayed as time series (Fig. 3a through c), 

the active surface area generally follows particle number concentration despite differences in 

logging intervals for the diffusion charger and condensation particle counter, respectively. 

During carbon nanofiber manufacturing operations,18 active surface area concentrations 

averaged 640 μm2 cm−3; greater than the TWAs observed for engine or passenger cabin fire 

suppression in this study (Table 1). However, the maximum concentration of 4700 μm2 

cm−3 attained during the vehicle 3 passenger cabin fire (Table 1) exceeded the maximum of 

Evans and Fent Page 7

Environ Sci Process Impacts. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1440 μm2 cm−3 during carbon nanofiber manufacturing operations,18 exceeded 1330 μm2 

cm−3 during direct gas-fired heater operation,26 and exceeded 2000 μm2 cm−3 observed 

during iron foundry pouring.26

Photoelectric response averaged 29 for engine fires overall and 34 for cabin fires overall 

(arbitrary units). The response provided by the photoelectric aerosol sensor is sensitive to 

particle adsorbed PAH and would suggest that the overall particle bound PAH 

concentrations during cabin fires exceeded those from engine fires. However, by 

normalizing the photoelectric response to the active surface area concentration,27 we 

obtained ratios of 0.31 for engine fires and 0.11 for cabin fires, suggesting, qualitatively at 

least, that engine fires were more enriched with particle bound PAH than cabin fires. As the 

photoelectric response is not calibrated to vehicle combustion aerosol, it is difficult to 

provide a more quantitative analysis in this instance. The photoelectric response during 

carbon nanofiber manufacturing operations18 averaged 70, greater than all TWAs obtained 

during engine or passenger cabin fire suppression (Table 1). However, the maximum 

photoelectric response of 1400 during the vehicle 2 passenger cabin fire (Table 1) exceeded 

the maximum of 415 observed during carbon nanofiber manufacturing operations.18

Lönnermark and Blomqvist,4 through similar ELPI measurements to those here, reported a 

particle size distribution from a vehicle fire with a mode just below 100 nm at maximum 

number concentration emission. At maximum particle mass emission, the mass size 

distribution had a sub-micrometer mode, suggesting predominately respirable particles. Our 

results in Fig. 4 from all six fires show a similar distribution. On a particle number basis, the 

sub-100 nm or ultrafine particle fraction made up the majority of measured particles 

throughout all engine compartment and passenger cabin fires, although the fine (100 nm to 1 

μm) and coarse fractions (1 μm to 10 μm) also contributed (Fig. 4).

Measured CO concentrations averaged 0.7 ppm and 3.1 ppm from 15 minute TWAs for 

engine and cabin fires, respectively. Cabin fires were a greater potential source for CO 

exposure than engine fires with an overall mean of 1.9 ppm obtained for all fires combined. 

Fent and Evans16 reported a geometric mean of 3.3 ppm CO from the 12 personal breathing 

zone samples for the fire crews obtained during the same series of vehicle fires, with a 

maximum transient concentration of 200 ppm. Despite significant differences in the 

respective sampling approaches, the CO measurements from within the duct and from within 

the personal breathing zones appear to be similar. However, the maximum transient 

concentration of CO measured from within the duct (during vehicle 3 cabin fire) was only 

62 ppm, below the NIOSH ceiling limit of 200 ppm.28 Exposure to CO reduces systemic 

transportation and intracellular use of oxygen.29

A majority of on-duty cardiovascular fatalities for firefighters occur during the afternoon or 

evening hours,30,31 in stark contrast to coronary heart disease deaths in the general 

population, which tend to peak in the morning hours.32 Kales et al.11 reported a relative risk 

increase of 60 to 100 times for sudden cardiac fatalities at the fire ground, or shortly 

following the fire suppression, when compared to non-emergency duties, and the fatality 

risk increased approximately threefold over physical training alone. Emergency fire 

response is therefore considered a risk factor for fatality from coronary heart disease.11,33
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Short term particle exposures34–36 and potential additive effects with exposure to CO37,38 

and short duration, high intensity noise39 may be the environmental factors contributing to 

adverse cardiovascular events.13 Together with personal risk factors,13 physical exertion40,41 

and heat stress,42,43 these combined stressors may be sufficient to trigger adverse cardiac 

events and warrant further investigation.

In the general population, exposure to ambient fine particles for periods over a few hours to 

weeks can trigger cardiovascular related mortality and non-fatal events.7 It should be noted 

that ambient concentrations, even during what are considered high concentration air 

pollution episodes, are significantly lower than those potentially encountered by firefighters 

during a fire response. Chronic exposure (e.g. over years) is known to increase the risk for 

cardiovascular mortality to an even greater extent than exposures over a few days and 

reduces life expectancy within more highly exposed segments of the population by several 

months to a few years.7 In addition to cardiovascular-related deaths, chronic exposures to 

particulate are associated with excess mortality from cancer and respiratory causes.44–46 

Furthermore, ultrafine particle deposition within the human respiratory system is increased 

by almost five fold during exercise.47 On a particle number basis, vehicle fire smoke is 

substantially ultrafine in nature (Fig. 4 and 5) and physical exertion is an essential 

component of fire response.48 No short term particle exposure limits are applicable for 

comparison, but, for example, 15 minute TWAs as we have reported in Table 1 might be 

useful when examining the relationship with particle exposure and acute adverse cardiac 

events.

Chemical speciation or compositional analysis of particulate matter contaminants was not 

conducted during this small study, but specific analytes were monitored in the vapor and gas 

form.13,14 Previous studies with vehicle fire emissions have reported PAHs, metals, 

carbonaceous materials, and adsorbed volatiles present in airborne particulate within the 

smoke from vehicle fires.3,4,25 Some listed contaminants are known or probable 

carcinogens. Firefighters are at an increased risk of developing certain cancers within the 

respiratory, digestive, and urinary systems when compared to the general population.8 

Combustion aerosols, such as from vehicle fires reported here (Fig. 4 and 5) and elsewhere4 

are predominantly respirable in size and are capable of penetrating to the unciliated, gas 

exchange regions of the lungs, but are deposited throughout the entire respiratory system.49 

Particles deposited within the ciliated airways are cleared over time; many of these particles 

will migrate (be swallowed) into the digestive tract, where constituents may be further 

metabolized. One study suggests that short-term high intensity particle exposures may be 

linked to an enhanced cancer risk when compared to lower but longer term particle 

exposures.50 Thus inhaled particles could conceivably play a role in the increased incidence 

of certain cancers in firefighters.

Limitations

The flexible metallic duct used in this study enabled direct reading monitoring from a safe 

distance, but also provided some sampling limitations. Particle losses within the duct were 

minimized by the high flow rate employed, and consequently, a short contaminant residence 

time. Nevertheless, for the turbulent flow within the duct (Re ~60 000) combined 

Evans and Fent Page 9

Environ Sci Process Impacts. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



gravitational (~3%) and inertial deposition losses (~2%) were estimated at ~5% for a worst 

case at 10 μm.51,52 Diffusional particle losses at ~1.5% were estimated for a worst case at 10 

nm.51,52 However, thermophoretic and electrostatic losses were assumed to be negligible 

with contaminants likely entering the duct at close to ambient temperatures (no significant 

temperature elevations were observed within the duct) and the duct walls were conductive 

(aluminum). Therefore, little changes in the overall particle size distributions were 

anticipated.

Whilst the fire crew mostly suppressed fires from either a southeasterly (engine 

compartment fires) or southerly (passenger cabin fires) position to the burning vehicle, two 

of the fire crew (nozzle operator and backup) would temporarily transition to the north side 

of the vehicle during overhaul for the passenger cabin fires. The duct was not sufficiently 

long to follow in this scenario, and so the inlet remained close to the southerly side of the 

vehicle with the additional member of the fire crew. Although held by one of the fire crew, 

the duct inlet was typically positioned just behind the nozzle operator’s shoulder. These 

positioning limitations would have likely resulted in some degree of particle concentration 

underestimation, and consequently, concentrations reported here are perhaps conservative 

estimates of the fire crews’ potential for exposure during vehicle fire suppression.

Conclusion

Although relatively short in duration, particle concentrations from vehicle fires may exceed 

background concentrations by orders of magnitude for a variety of particle metrics (number, 

respirable mass, active surface area, and photoelectric response). On average, firefighters 

were potentially exposed to a greater extent during passenger cabin fire suppression than 

engine compartment fire suppression, by all considered metrics. This finding may be 

explained by the greater available fuel load and a longer suppression. The wind direction 

and the relative position of the firefighters to the burning vehicles played a significant role in 

the firefighters’ potential for exposure. Although fire crews generally suppressed vehicle 

fires from an upwind or smoke clear position, the wind would occasionally veer engulfing 

fire crews in the smoke plume and resulting in maximum transient exposure events. The 

findings from this and our earlier article16 suggest that although vehicle fires may be rapidly 

suppressed, intermittent high intensity exposures to gases, vapors and particles from vehicle 

fires could potentially contribute to firefighters’ risk of certain cancers and adverse 

cardiovascular events, particularly if SCBA is not worn.

Additional studies evaluating firefighter exposures during fire suppression are warranted. 

Based on the findings from this and from our earlier companion article,16 we recommend 

that SCBA be worn throughout all phases of the vehicle fire response to reduce the potential 

of firefighter exposures to hazardous components within fire smoke.

Acknowledgments

Funding

This study was supported by the NIOSH Health Hazard Evaluation Program, Division of Surveillance, Hazard 
Evaluations and Field Studies and by the Division of Applied Research and Technology.

Evans and Fent Page 10

Environ Sci Process Impacts. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The authors are grateful to James Couch, Manny Rodriguez, Chad Dowell and Donald Booher for technical 
assistance during the study and to Fariba Nourian, Charles Urban and Amanda Harney for photography, 
videography and health communication assistance. The authors acknowledge Paul Baron (deceased), Thomas Hales 
and Travis Kubale for numerous insightful discussions and Kevin Dunn, Kenneth Mead and Jerry Kratzer for 
assistance with the duct and blower system. The authors wish to thank Matthew Dahm, Thomas Hales, John 
Snawder and the anonymous reviewers at the journal for their technical review and helpful comments with this 
manuscript. The cooperation and support of the small municipal fire department within SouthWest Ohio, who 
participated in this evaluation, was greatly appreciated.

References

1. United States Fire Administration, National Fire Data Center. Fire in the United States 2003–2007. 
15Oct. 2009 http://www.usfa.fema.gov/downloads/pdf/statistics/fa_325.pdf

2. United States Fire Administration, National Fire Data Center. Highway Vehicle Fires (2008–2010). 
Topical Fire report Series. Jan.2013 13(11) http://www.usfa.fema.gov/downloads/pdf/statistics/
v13i11.pdf. 

3. Wichmann H, Lorenz W, Bahadir M. Release of PCDD/F and PAH during vehicle fires in traffic 
tunnels. Chemosphere. 1995; 31(2):2755–2766.

4. Lönnermark A, Blomqvist P. Emissions from an automobile fire. Chemosphere. 2006; 62:1043–
1056. [PubMed: 15964054] 

5. Okamoto K, Watanebe N, Hagimoto Y, Chigira T, Masano R, Miura H, Ochiai S, Satoh H, Tamura 
Y, Hayano K, Maeda Y, Suzuki J. Burning behavior of sedan passenger cars. Fire Saf J. 2009; 
44:301–310.

6. Baxter CS, Ross CS, Fabian T, Borgerson JL, Shawon J, Gandhi PD, Dalton JM, Lockey JE. 
Ultrafine Particle Exposure During Fire Suppression- Is it an Important Contributory Factor for 
Coronary Heart Disease in Firefighters? J Occup Environ Med. 2010; 52(8):791–796. [PubMed: 
20657302] 

7. Brook RD, et al. Particulate Matter Air Pollution and Cardiovascular Disease. Circulation. 2010; 
121:2331–2378. [PubMed: 20458016] 

8. Daniels RD, Kubale TL, Yiin JH, Dahm MM, Hales TR, Baris D, Zahm SH, Beaumont JJ, Waters 
KM, Pinkerton LE. Mortality and cancer incidence in a pooled cohort of US firefighters from San 
Francisco, Chicago and Philadelphia (1950–2009). Occup Environ Med. 2014; 71:388–397. 
[PubMed: 24142974] 

9. Pukkala E, Martinsen JI, Weiderpass E, Kjaerheim K, Lynge E, Tryggvadottir L, Sparén P, Demers 
PA. Cancer incidence among firefighters: 45 years of follow-up in five Nordic countries. Occup 
Environ Med. 2014; 71(6):398–404. [PubMed: 24510539] 

10. The National Fire Protection Association (NFPA). United States Fire Service Fact Sheet. 2014. 
http://www.nfpa.org/~/media/Files/Research/Fact%20sheets/FireServiceFactSheet.pdf

11. Kales SN, Soteriades ES, Christophi CA, Christiani DC. Emergency duties and deaths from heart 
disease among fire fighters in the United States. N Engl J Med. 2007; 356:1207–1215. [PubMed: 
17377158] 

12. Karter, MJ.; Molis, JL. US Firefighter Injuries, 2013. National Fire Protection Association; Quincy 
MA: 2014. 

13. Smith DL, Barr DA, Kales SN. Extreme sacrifice: sudden cardiac death in the US fire service. 
Extreme Physiology & Medicine. 2013; 2:6. [PubMed: 23849605] 

14. Fent, KW.; Evans, DE.; Couch, J. NIOSH HHE Report 2008-0241-3113. 2010. Evaluation of 
Chemical and Particle Exposures during Vehicle Fire Suppression Training. 

15. Fent, KW.; Eisenberg, J.; Evans, DE.; Sammons, D.; Robertson, S.; Striley, C.; Snawder, J.; 
Mueller, C.; Kochenderfer, V.; Pleil, J.; Stiegel, M.; Horn, G. NIOSH HHE Report 
2010-0156-3196. 2013. Assessment of Dermal Exposure to Polycyclic Aromatic Hydrocarbons in 
Firefighters. 

16. Fent KW, Evans DE. Assessing the risk to firefighters from chemical vapors and gases during 
vehicle fire suppression. J Environ Monit. 2011; 13(3):536–543. [PubMed: 21274476] 

Evans and Fent Page 11

Environ Sci Process Impacts. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.usfa.fema.gov/downloads/pdf/statistics/fa_325.pdf
http://www.usfa.fema.gov/downloads/pdf/statistics/v13i11.pdf
http://www.usfa.fema.gov/downloads/pdf/statistics/v13i11.pdf
http://www.nfpa.org/~/media/Files/Research/Fact%20sheets/FireServiceFactSheet.pdf


17. Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J. Respiratory effects are associated with the 
number of ultrafine particles. Am J Respir Crit Care Med. 1997; 155(4):1376–1383. [PubMed: 
9105082] 

18. Evans DE, Ku BK, Birch ME, Dunn KH. Aerosol Monitoring During Carbon Nanofiber 
Production: Mobile Direct-Reading Sampling. Ann Occup Hyg. 2010; 54(5):514–531. [PubMed: 
20447936] 

19. Evans DE, Heitbrink WA, Slavin TJ, Peters TM. Ultrafine and respirable particles in an 
automotive grey iron foundry. Ann Occup Hyg. 2008; 52(1):9–21. [PubMed: 18056626] 

20. The National Fire Protection Association (NFPA). United States Vehicle Fire Trends and Patterns. 
2010. http://www.nfpa.org/~/media/Files/Research/NFPA%20reports/Vehicles/osvehicle.pdf

21. Code of Federal Regulations (CFR). U.S. Government Printing Office, Office of the Federal 
Register; Washington, DC: 29 CFR 190.134

22. Austin CC, Dussault G, Ecobichon DJ. Municipal Firefighter Exposure Groups, Time Spent at 
Fires and Use of Self-Contained-Breathing-Apparatus. Am J Ind Med. 2001; 40:683–692. 
[PubMed: 11757045] 

23. Bolstad-Johnson DM, Burgess JL, Crutchfield CD, Storment S, Gerkin R, Wilson JR. 
Characterization of firefighter exposures during fire overhaul. Am Ind Hyg Assoc J. 2000; 
61:636–641.

24. Burgess JL, Nanson CJ, Bolstad-Johnson DM, Gerkin R, Hysong TA, Lantz RC, Sherill DL, 
Crutchfield CD, Quan SF, Bernard AM, Witten ML. Adverse Respiratory Effects Following 
Overhaul in Firefighters. J Occup Environ Med. 2001; 43(5):467–473. [PubMed: 11382182] 

25. Fabian, T.; Borgerson, JL.; Kerber, SI., et al. Underwriters Laboratories, Inc. (UL). Final Report: 
Firefighter Exposures to Smoke Particulates. 2010. (Report No. 08CA31673), http://site.ul.com/
global/documents/offerings/industries/buildingmaterials/fireservice/WEBDOCUMENTS/
EMW-2007-FP-02093.pdf

26. Heitbrink WA, Evans DE, Ku BK, Maynard AD, Slavin TJ, Peters TM. Relationships among 
particle number, surface area, and respirable mass concentration in automotive engine 
manufacturing. J Occup Environ Hyg. 2009; 6(1):19–32. [PubMed: 18982535] 

27. Ott WR, Siegmann HC. Using multiple continuous fine particle monitors to characterize tobacco, 
incense, candle, cooking, wood burning and vehicular sources in indoor, outdoor, and in-transit 
settings. Atmos Environ. 2006; 40:821–843.

28. Barsen, ME., editor. NIOSH. NIOSH Pocket Guide to Chemical Hazards. U.S. Department of 
Health and Human Services, Centers for Disease Control and Prevention, National Institute for 
Occupational Safety and Health (NIOSH); Cincinnati, OH: 2010. 

29. Ernst A, Zibrak JD. Carbon monoxide poisoning. N Engl J Med. 1998; 339:1603–1608. [PubMed: 
9828249] 

30. Hales, T.; Baldwin, T.; Sexson, K.; Brown, S. NIOSH Fire Fighter Fatality Investigation and 
Prevention Program. Paper Presented at the IAFF Redmond Symposium; Honolulu, HI. 1999. 

31. Kales SN, Soteriades ES, Christoudias SG, Christiani DC. Firefighters and on-duty deaths from 
coronary heart disease: a case control study. Environ Health: Global Access Sci Source. 2003; 
2:14.

32. Elliott WJ. Cyclic and circadian variations in cardiovascular events. Am J Hypertens. 2001; 
14:291S–295S. [PubMed: 11583142] 

33. NIOSH Alert: Preventing Fire Fighter Fatalities Due to Heart Attacks and Other Sudden 
Cardiovascular Events [DHHS (NIOSH) Publication No. 2007–133].

34. Riediker M, Devlin RB, Griggs TR, Herbst MC, Bromberg PA, Williams RW, Cascio WE. 
Cardiovascular effects in patrol officers are associated with fine particulate matter from brake 
wear and engine emissions. Part Fibre Toxicol. 2004; 1:2. [PubMed: 15813985] 

35. Peters A, Klot SV, Heier M, Trentinaglia I, Hörmann A, Wichmann HE, Löwel H. Exposure to 
Traffic and the Onset of Myocardial Infarction. N Engl J Med. 2004; 351(17):1721–1730. 
[PubMed: 15496621] 

36. Pope CA III, Muhlestein JB, May HT, Renlund DG, Anderson JL, Horne BD. Ischemic Heart 
Disease Events Triggered by Short-Term Exposure to Fine Particulate Air Pollution. Circulation. 
2006; 114:2443–2448. [PubMed: 17101851] 

Evans and Fent Page 12

Environ Sci Process Impacts. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nfpa.org/~/media/Files/Research/NFPA%20reports/Vehicles/osvehicle.pdf
http://site.ul.com/global/documents/offerings/industries/buildingmaterials/fireservice/WEBDOCUMENTS/EMW-2007-FP-02093.pdf
http://site.ul.com/global/documents/offerings/industries/buildingmaterials/fireservice/WEBDOCUMENTS/EMW-2007-FP-02093.pdf
http://site.ul.com/global/documents/offerings/industries/buildingmaterials/fireservice/WEBDOCUMENTS/EMW-2007-FP-02093.pdf


37. Allred EN, Bleecker ER, Chaitman BR, Dahms TE, Gottlieb SO, Hackney JD, Pagano M, 
Selvester RH, Walden SM, Warren J. Short-term effects of carbon monoxide exposure on the 
exercise performance of subjects with coronary artery disease. N Engl J Med. 1989; 321:1426–
1432. [PubMed: 2682242] 

38. Allred EN, Bleecker ER, Chaitman BR, Dahms TE, Gottlieb SO, Hackney JD, Pagano M, 
Selvester RH, Walden SM, Warren J. Effects of carbon monoxide on myocardial ischemia. 
Environ Health Perspect. 1991; 91:89–132. [PubMed: 2040254] 

39. Tubbs, RL. Noise and hearing loss in firefighting. In: Orris, P.; Melius, J.; Duffy, RM., editors. 
Firefighters’ Safety and Health, Occupational Medicine State of the Art Reviews. Vol. 10. Hanley 
& Belfus, Inc; Philadelphia, PA: 1995. p. 843-856.

40. Albert CM, Mittleman MA, Chae CU, Lee IM, Hennekens CH, Manson JE. Triggering of sudden 
death from cardiac causes by vigorous exertion. N Engl J Med. 2000; 343:1355–1361. [PubMed: 
11070099] 

41. Mills NL, Törnqvist H, Gonzalez MC, Vink E, Robinson SD, Söderburg S, Boon NA, Donaldson 
K, Sandström T, Blomberg A, Newby DE. Ischemic and Thrombotic Effects of Dilute Diesel-
Exhaust Inhalation in Men with Coronary Heart Disease. N Engl J Med. 2007; 357(11):1075–
1082. [PubMed: 17855668] 

42. Rossi R. Firefighting and its influence on the body. Ergonomics. 2003; 46:1017–1033. [PubMed: 
12850937] 

43. Smith DL, Petruzzello SJ, Manning TS. The Effect of Strenuous Live-Fire Drills on 
Cardiovascular and Psychological Responses of Recruit Firefighters. Ergonomics. 2001; 44:244–
254. [PubMed: 11219758] 

44. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE. An 
Association between Air Pollution and Mortality in Six U.S. Cities. N Engl J Med. 1993; 329(24):
1753–1759. [PubMed: 8179653] 

45. Pelucchi C, Negri E, Gallus S, Boffetta P, Tramacere I, La Vecchia C. Long-term particulate 
matter exposure and mortality: a review of European epidemiological studies. BMC Public Health. 
2009; 9:453–461. [PubMed: 19995424] 

46. Miller KA, Siscovick DS, Sheppard L, Shepard K, Sullivan JH, Anderson GL, Kaufman JD. Long-
Term Exposure to Air Pollution and Incidence of Cardiovascular Events in Women. N Engl J 
Med. 2007; 365(5):447–458. [PubMed: 17267905] 

47. Daigle CC, Chalupa DC, Gibb FR, Morrow PE, Oberdörster G, Utell MJ, Frampton MW. Ultrafine 
particle deposition in humans during rest and exercise. Inhalation Toxicol. 2003; 15:539–552.

48. Smith DL, Petruzzello SJ. Selected physiological and psychological responses to live-fire drills in 
different configurations of firefighting gear. Ergonomics. 1998; 41(8):1141–1154. [PubMed: 
9715673] 

49. ICRP. Human Respiratory Tract Model for Radiological Protection. ICRP Publication 66. Ann 
ICRP. 1994; 24(1–3)

50. Halmes NC, Roberts SM, Tolson JK, Portier CJ. Reevaluating Cancer Risk estimates for Short-
Term Exposure Scenarios. Toxicol Sci. 2000; 58:32–42. [PubMed: 11053538] 

51. Brockmann, JE. Sampling and transport of aerosols. In: Baron, PA.; Willeke, K., editors. Aerosol 
Measurement Principles, Techniques, and Applications. Wiley-Interscience; New York: 2001. p. 
143-95.

52. Hinds, WC. Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles. 2. 
Wiley-Interscience; New York: 1999. 

53. Code of Federal Regulations (CFR), 42 CFR 85. U.S. Government Printing Office, Office of the 
Federal Register; Washington, DC: 

Evans and Fent Page 13

Environ Sci Process Impacts. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Environmental impact

Vehicle fires are typically intense, short duration fires that have the potential to release a 

plethora of combustion and thermally degraded products into the environment; the 

atmosphere being most notably and visibly affected. Vehicle fire residues and 

contaminated water from fire suppression may also enter into aquatic and soil systems. 

Uncontrolled combustion and thermal degradation of plastics, composites, upholstery, 

alloys, paints, coatings, sealants, adhesives, tires, belts, wires, batteries, lubricants, 

coolants, and fuels can result in the release of a mixture of toxic compounds. First 

responders to a vehicle fire are potentially exposed to these compounds. Air quality is 

also adversely affected, in the locale or downwind of a vehicle fire.
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Fig. 1. 
The particle instrument sampling platform with the sample duct. Sample probes were 

positioned within the central region of the duct facing the induced flow.
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Fig. 2. 
Fire crew tackling an engine compartment fire (1994 Ford Aerostar minivan) during 

knockdown on vehicle 1. Flexible metallic sampling duct held by a member of the fire crew, 

close to the nozzle operator’s shoulder.
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Fig. 3. 
(a) Time series of particle metrics for sequential engine and cabin fires for vehicle 1 (1994 

Ford Aerostar minivan). (b) Time series of particle metrics for sequential engine and cabin 

fires for vehicle 2 (1986 Toyota Corolla sedan). (c) Time series of particle metrics for 

sequential engine and cabin fires for vehicle 3 (1986 Toyota Celica coupe). I – ignition/

approach, II – knockdown, and III – overhaul phases of fire response.
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Fig. 4. 
Size fractionated particle number as a time series for all fires, using the Electrical Low 

Pressure Impactor (ELPI).
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Fig. 5. 
Particle size distributions acquired with the ELPI for background, diesel exhaust plume, 

engine compartment fire plume and passenger cabin fire plume.
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